

# Integrated, Automated Distributed Generation (DG) Technologies Demonstration

Presented by:

Roger Weir Energy Manager ATK Aerospace Systems

Smart Grid Peer Review, Denver, CO November 2-4, 2010



## **Background / Overview**



A premier aerospace and defense company

- ATK conducted a comprehensive plant-wide energy assessment (PWA) in FY07 and FY08.
- In 2008, initiated agreement with DOE/NETL for Phase I of distributed generation (DG) development project
- 2009 into 2010 Phase I project
- Significant financial and technology adjustments
- 2010 agreement and funding for a Phase I extension

#### About ATK and the facility:

- What Is ATK?
- Where is the Promontory plant?
- Promontory facts
- Pictures

#### **About the DG project:**

- DG original project concepts
- Phase I implementation
- Phase I lessons learned
- Phase I extension project
- Plant demand analysis
- DG project summary

## Alliant Techsystems Inc. (ATK)





## **ATK Current Business Overview**



A premier aerospace and defense company

#### ATK is organized into four operating groups

#### **Aerospace Systems**

President: Blake Larson



- Solid propulsion systems
- Advanced composites
- Satellites, subsystems, and components
- Advanced antennae and radomes
- Energetic materials
- Military flares and decoys

## **Armament Systems**President: Karen Davies



- Small-caliber ammunition
- Medium-caliber ammunition
- Medium-caliber gun systems
- Precision munitions
- Propellants for ammunition and tactical rockets
- Large-caliber ammunition

## Missile Products President: Mike Kahn



- Missile systems
- Solid propulsion and control systems
- Solid rocket motors and warheads
- STAR motors
- Aircraft survivability
- Advanced structures and components

## Security & Sporting President: Ron Johnson



- Small-caliber ammunition
- Gun care and shooting accessories
- Sport shooting accessories and reloading supplies
- Law enforcement accessories and equipment

## Where in the World Is Promontory, UT?





## **ATK Promontory "City" Facts**



- 19,900-acre plant site
- Over 540 buildings
- 75 miles of roads
- 70 miles each of steam, condensate, and compressed air lines
- 60 miles of electrical power lines
- 75 miles of water lines
- Two waste water treatment plants
- 28 boiler houses
- Three main electrical substations
- Annual energy bill over \$15,000,000

## **ATK Promontory Photos**





## **ATK Promontory Project**



A premier aerospace and defense company

#### **Overall Project Purpose and Objectives**

 Develop and demonstrate a diverse system of renewable DG technologies that are integrated into an intelligent system-wide automation system with two-way communications to the utility and that will produce a verifiable, on-demand reduction of at least 15% of substation load with no disruption of facility operations.

#### **Major Milestones**

- Design and test renewable DG systems controls
- Design and test the utility/customer gateway
- Engineer and install 2.6 MW of diverse, renewable, distributed generation
- Demonstrate system operations
- Measure and validate savings and systems benefits

Demonstrate that distributed/renewable resources can provide meaningful benefits to customers/users and utility/interconnected grid

## **ATK Project Original Structure**



#### **Project Partners:**

- ATK Aerospace Systems project management/host
- P&E Automation (San Diego, CA) technology/experience
- Rocky Mountain Power (Div. of PacifiCorp) interface/incentives

Structure: Phase I – development, Phase II – demonstration

| Total Project Cost            | \$3,769,052              |                                   |
|-------------------------------|--------------------------|-----------------------------------|
|                               | <b>Phase I</b><br>(FY09) | <b>Phase II</b><br>(FY 10 – FY13) |
| Total Budget                  | \$878,673                | \$2,890,379                       |
| <b>DOE Share 80/50%</b>       | \$702,938                | \$1,445,190                       |
| P&E Cost Share 5/10%          | \$43,934                 | \$289,038                         |
| ATK Share 15/40%              | \$131,801                | \$1,156,152                       |
| RMP Incentive (reimbursement) | \$0                      | \$700,000                         |
| Annual energy savings \$800K  |                          |                                   |

# Project Management – milestone based tracking ATK



A premier aerospace and defense company



#### Recent DOE plant-wide assessment

- Tracked budget and task milestones against baselines
- Same management team in place

#### Tracking metrics alert to deviations BEFORE they impact project success

- Budget plan-to-actual
- Schedule plan-to-actual
- Fine-grained milestone plans projects can have hundreds of trackable milestones

## **Project Overview**



### **Demand Reduction / Peak Shaving:**

#### **Renewable Distributed Generation**

- Mix of renewable technologies
- Integrated monitoring and control
  - Includes automated measurement and verification
  - Can be integrated with future plant-wide system control and data acquisition (SCADA)

#### **Customer/Utility communications: Utility Gateway Application**

- Provides utility real-time visibility into customer-owned renewable DG resources
- Two-way Customer <> Utility web interface
  - Real-time behind-the-meter customer generation data
  - Real-time utility distribution, capacity and quality data
  - Extensible to include real-time pricing
  - Day ahead dispatch notification

## **DG Implementation Summary**



#### Phase I Development (Year 1 – FY2009)

- Design and testing of reliable and effective DG controls
- Design and preliminary testing of utility gateway hardware and software
- Collect/compile historical baseline data
- Provide full design, engineering, specifications of DG
- Design and installation of sufficient generation equipment to validate
   Phase II feasibility
  - Two wind turbines (2 kW each)
  - One micro-hydro turbine (10 kW)
  - One compressed air generation/storage device (20 kW)

Decision point: Successful completion of Phase I,

mutual agreement to proceed with Phase II

# Project Equipment – Wind





# Project Equipment – Hydro





# **Project Equipment – Compressed Air**





## Project Equipment – Controls



A premier aerospace and defense company



#### PC

- Std IT operating systems
- Ethernet connectivity
- Two-way communications to generator controller
- Digital and analog I/O
- Std IT database storage
- Low cost

## **Project Presentations**



- DOE Peer Review Red Bank, NJ Oct 2008
- Energy Congress Atlanta Apr 2009 Voldness
- Energy Solutions Center Salt Lake City Jun 2009
- Utah Public Service Commission Jul 2009
- Questar Annual Customer Meeting Sep 2009
- FMA Congress Chicago Sep 2009 Gosen
- International MicroGrid Symposium San Diego Sep 2009
- Utah Energy Users Salt Lake City Oct 2009
- Utah Energy Forum Utah State Capital March 2009
- Utah Public Service Commission Promontory site visit May 2010
- MicroGrid Update Teleconference May 2010

## **Lesson Learned**



#### Interconnection agreement

- First meeting \$100K cost two years
- Application process and fast track process
- Approval utility is in control and can be a huge impediment

#### **Utility interface and cooperation**

- No tariffs, no way to ensure recovery of costs
- Look other way, allow us to hook up with appropriate technical personnel

#### Viability of large-scale hydro storage

- No viable "run of pipe" installation locations (large pipe, small flows)
- Must have upper and lower storage capacity for effective demand capacity

## **Lesson Learned**



#### Viability of compressed air storage

- Better to eliminate sources of waste compressed air versus generating, knowing when excess can be stored, collecting waste, amplifying, and storing at high pressure
- Generating unit had significant "parasitic" loads; not yet found way to de-energize and then operate properly when needed

#### Viability of compressor waste heat for electric generation

Waste heat from compressors is too low temperature to efficiently use in an ORC unit

# Use of standard IT equipment and operating systems for monitoring/control/data collection

- Successfully used standard single board, solid-state-storage PCs running Lynex operating systems; to talk to the generation equipment and then process and send data to a central database for storage
- Database source of all data for control and measurement and reporting
- Used existing plant Ethernet for communication to PCs and database

## **Lesson Learned**



#### 15% demand control with planned mix/type of resources

- Study of plant kW curves
  - 76% avg load factor
  - 15% demand reduction required 10 12 hours per day of peak resource operation
    - Compressed air resources limited to less than one hour per day operation
    - Hydro resource maximum of three hours per day
  - Needed to re-plan an effective 15% demand reduction generation equipment mix

#### **Utility scale battery storage options**

- Investigated battery storage option
- 500 kW capacity for five hours per day
- Use of wind and boiler waste heat recovery for re-charging battery
- Good match for a 3 4% demand reduction

## Phase I Extension approach



- Battery can provide 500 kW for up to 5 hours per day
  - Battery system are fully self contained requiring minimal installation and integration costs
- Steam boilers stack waste heat is a viable source for current Organic Rankine Cycle technology (temperatures above 300 F)
  - Will provide waste heat operating experience that should prove useful for potential future geothermal generation (Phase II?)
- Wind generation can be scaled to provide energy to recharge battery for a true renewable resource
- Waste heat capacity will provide energy for battery recharge.
- Battery charge/discharge cycles will be tested to optimize cycle versus simple full daily charge and discharge.
- Utility off-peak energy price differential to on-peak may also prove to be a cost effective source of battery recharge (\$.022518 versus \$035858/kWh, 59 percent higher not including peak demand or facility charges)

## **DG Implementation – Phase I Extension**



A premier aerospace and defense company

Two-year project – Oct 2010 to Sep 2012

Project cost \$1.8M; DOE \$1,445K, ATK \$361K

- Project scope
  - One wind generator 100 kW
  - Two waste heat recovery generators boiler stack 50 kW ea 100 kW
  - One battery storage unit 500 kW
- Data collection
  - Utility gateway two-way communications
  - Automated measurement & verification
  - Automated optimization of DG resource usage (3.4% demand reduction)
    - or RMP system peak reduction
  - Validate operational savings \$150K/year





## **Demand Reduction – Data Analysis**



A premier aerospace and defense company

# Promontory 15% Demand Reduction Curves August 2009 Peak 17,926 - 85% Peak Limit 15,237



## **Demand Reduction – Data Analysis**









## **Demand Reduction – Fixed Resource**





## **Demand Resource – Load Following**





## **Demand Resource – Utility Dispatch**





## **Summary/Benefits**



#### Project will provide NETL with extensible technologies

- Gateway application provides utility with real-time visibility to customer renewable and storage DG capacity
- Controls based on open, IT standards for portability to other utilities and customers
- Use of utility grade battery system for renewable energy storage and demand control
- Use of boiler waste heat for electric generation using ORC

# Unique monitoring/control application optimizes mixed DG for demand control

- Application to determine real-time optimal usage of DG resource based on
  - resource availability (wind)
  - peak load
  - available stored energy
  - on and off peak energy cost differentials
  - utility dispatch

A premier aerospace and defense company

### Roger Weir

ATK Aerospace Systems PO Box 98, M/S G2UT Magna, UT 84044-0098 801-251-2063

roger.weir@atk.com

Smart Grid Peer Review, Denver, CO
November 2-4, 2010